TUNGUM® ALLOY TUBING DATA TABLE

Ρ

Α

G

E

TYPE: TUNGUM ALLOY TUBING TCL100/B								
METRIC RANGE:								
TUBE O.D. (MM)	WALL THICKNESS (MM)	WORKING PRESSURE (PSI)	WORKING PRESSURE (BAR)	BURSTING PRESSURE (PSI)	BURSTING PRESSURE (BAR)	WEIGHT (KG/MTR)		
38	4.0	3200	220	13,050	900	3.64		

Special Note: The above working pressures are for guidance purposes only. Your design pressure should include a suitable allowance over the working pressure to allow for possible fluctuations of pressure during operation. This allowance should be separately determined for each application by your design department.

Lloyd's approved batch testing available at extra cost.

®Tungum is a registered trademark.

OTHER SIZES ARE AVAILABLE ON REQUEST

TUNGUM ALLOY TUBING

SPECIFICATIONS AND APPROVALS

SEE BELOW FOR

BACK TO

T2000

TUNGUM ALLOY TUBING METRIC RANGE

OUTSIDE	WALL	MINIMUM	BORE	CROSS	WEI	GHT
DIAMETER (mm)	SECTION (mm)	THEORETICAL BURST PRESSURE (Bar)	DIAMETER (mm)	SECTIONAL BORE AREA (sq. mm)	Kg/M	Kg/ft
3.0	0.80	2715	1.40	1.5	.047	.014
5.0	0.50	1515	2.00	3.1	.033	.010
35	0.80	2225	1.90	2.8	.058	.018
5.5	0.50	1265	2.50	4.9	.040	.012
	1.00	2500	2.00	3.1	.080	.024
4.0	0.80	1890	2.40	4.5	.069	.021
	0.50	1090	3.00	7.1	.047	.014
	1.25	1985	3.50	9.6	.159	.048
6.0	1.00	1515	4.00	12.6	.134	.041
	0.80	1170	4.40	15.2	.111	.034
	2.00	2500	<mark>4.</mark> 00	12.6	.321	.098
	1.50	1745	<mark>5.</mark> 00	19.6	.261	.080
8.0	1.25	1405	<mark>5.5</mark> 0	<mark>2</mark> 3.8	.226	.069
	1.00	1090	<mark>6.0</mark> 0	28.3	.187	.057
	0.80	850	<mark>6.4</mark> 0	32.2	.154	.047
	2.00	1890	<mark>6.00</mark>	28.3	.428	.131
10.0	1.50	1340	7.00	38.5	.341	.104
	1.00	850	8.00	50.3	.241	.073
	2.50	1985	7.00	38.5	.636	.194
	2.00	1515	8.00	50.3	.535	.163
12.0	1.60	1170	<mark>8.8</mark> 0	60.8	.445	.136
	1.20	850	<mark>9.6</mark> 0	72.4	.347	.106
	1.00	695	<mark>10.</mark> 00	78.5	.294	.090
15.0	1.60	910	<mark>11.</mark> 80	109.4	.574	.175
	4.00	2495	<mark>8.</mark> 00	50.3	1.280	.390
	3.50	2105	<mark>9</mark> .00	63.6	1.162	.354
	3.00	1745	10.00	78.5	1.044	.318
16.0	2.50	1405	11.00	95.0	.903	.275
	2.00	1090	12.00	113.1	.749	.228
	1.60	850	12.80	128.7	.617	.188
	1.00	510	14.00	153.9	.401	.122
	4.00	1885	12.00	113.1	1.772	.540
	3.50	1605	13.00	132.7	1.546	.471
	3.00	1340	14.00	153.9	1.365	.416
20.0	2.50	1090	15.00	176.7	1.171	.357
	2.00	850	16.00	201.1	.964	.294
	1.50	620	17.00	227.0	.743	.226
	1.00	405	18.00	254.5	.509	.155
22.0	1.60	600	18.80	277.6	.874	.266
22.0	1.00	365	20.00	314.2	.562	.171

P A

G

Е

TUNGUM ALLOY TUBING METRIC RANGE

OUTSIDE	WALL	MINIMUM	BORE	CROSS	WEI	GHT
DIAMETER (mm)	SECTION (mm)	THEORETICAL BURST PRESSURE (Bar)	DIAMETER (mm)	SECTIONAL BORE AREA (sq. mm)	Kg/M	Kg/ft
	5.00	1885	15.00	176.7	2.677	.814
	4.00	1445	17.00	227.0	2.248	.685
	3.50	1240	18.00	254.5	2.014	.614
25.0	3.00	1040	19.00	283.5	1.767	.538
25.0	2.50	850	20.00	314.2	1.506	.459
	2.00	665	21.00	346.4	1.231	.375
	1.50	490	22.00	380.1	.944	.288
	1.00	320	23.00	415.5	.642	.196
	6.00	1885	18.00	254.5	3.850	1.174
	5.00	1515	20.00	314.2	3.346	1.020
	4.00	1170	22.00	380.1	2.784	.848
	3.50	1005	23.00	415.5	2.483	.757
30.0	3.00	850	24.00	452.4	2.168	.661
	2.50	695	25.00	490.9	1.840	.561
	2.00	545	26.00	530.9	1.499	.457
	1.50	405	27.00	572.6	1.144	.349
	1.00	265	28.00	615.8	.776	.237
	6.00	1420	26.00	530.9	5.139	1.566
	5.00	1155	28.00	615.8	4.416	1.346
	4.00	900	<u>30.0</u> 0	706.9	3.640	1.110
38.0	3.50	775	31.00	754.8	3.233	.985
	3.00	655	<mark>32.</mark> 00	804.2	2.810	.857
	2.50	540	<mark>33.</mark> 00	855.3	2.376	.724
	2.00	425	<mark>34</mark> .00	908.0	1.928	.587
	1.50	315	35.00	962.1	1.465	.447
	7.00	1240	36.00	1018.0	8.050	2.454
	6.00	1040	38.00	1134.2	7.076	2.152
	5.00	850	40.00	1256.6	6.022	1.836
50.0	4.00	665	42.00	1385.4	4.925	1.501
	3.50	575	43.00	1452.2	4.356	1.328
	3.00	490	44.00	1520.5	3.774	1.150
	2.50	405	45.00	1590.6	3.179	.968
	2.00	320	46.00	1662.1	2.570	.782
	7.00	1065	43.00	1452.3	9.370	2.853
	6.00	900	45.00	1590.4	8.191	2.496
57.0	5.00	735	47.00	1734.9	6.959	2.121
	3.50	500	50.00	1963.5	5.012	1.528
	2.00	280	53.00	2206.4	2.945	.897
	5.50	595	65.10	3328.5	10.393	3.168
/0.l	2.00	205	72.14	4086.9	3.967	1.209

G

Е

ΒΑСΚ ΤΟ

SPECIFICATIONS AND APPROVALS

SPECIFICATIONS: All Tungum Alloy tubes have basically the same chemical composition, but are man- ufactured to a variety of Specifications accord- ing to the demands of the end use.	The following Standards refer to Tungum Alloy tubing:-		
 House Specification TCL100 "Tungum tubing for general use". The Specification is available in 3 ratings: TCL100/A : Tested to 69 BAR (1000 psi) or Eddy current tested - Standard specification 	Note:1) These are pre-delivery test pressure levels. They do not determine the working pressure capability of any given tube size. 2) Pre-delivery hydraulic tests to customer specific levels can be carried out on request.OnN.B. When employed, Eddy Current Tests		
TCL100/B : Tested to 310 BAR (4500 psi) TCL100/C : Tested to 465 BAR (6750 psi)	are conducted in accordance with the requirements of BS. 3889 and ASTM E.243-85.		
 BRITISH STANDARD 1306 BRITISH STANDARD 2871 Part 2 Metric FRENCH NAT. STANDARD UZ.15.NS AMERICAN STANDARD A.S.T.M B706-86 MINISTRY OF DEFENCE SPECIFICATIONS:- AVIATION : DTD. 5019 (for H.P. SYSTEMS) : DTD.253A (for L.P. SYSTEMS)] Identified as Alloy CZ.127 Identified as Copper Alloy UNS C.69100 NAVY : NES.749 Part 3 ARMY : AFS.4000		
 Tungum Hydraulics Limited is totally dedicated to the concept of quality. The inspection facility is approved to:- BS EN ISO 9002-1994. CIVIL AVIATION AUTHORITY STANDARD 	Tungum Alloy tubing and fittings have the approval of • LLOYDS REGISTER OF SHIPPING. • DET NORSKE VERITAS		
AS A MATERIAL SUPPLIER.			

CHEMICAL COMPOSITION

	PER CENT				
ELEIVIENI	MIN	MAX			
Copper	81.00	86.00			
Aluminium	0.70	1.20			
Nickel	0.80	1.40			
Silicon	0.80	1.30			
Iron		0.25			
Lead		0.05			
Tin		0.10			
Manganese		0.10			
Total Other Impurities		0.50			
Zinc	The Re	emainder			

PHYSICAL PROPERTIES OF TUNGUM ALLOY

MECHANICAL PROPERTIES

SPECIFIC GRAVITY: WEIGHT:		Kg/mm ³ lb.per cu.in.	8.60 8.52 x 10 ⁻⁶ 0.308
ULTIMATE TENSILE STRENGTH:	Mean Value	N/mm ² Tons per sq.in.	480 31.07
	Min Value for NES.749 PT.3	N/mm² Tons per sq.in.	450 29.13
	Min Value for TCL100	N/mm ² Tons per sq.in.	450 27.84
	Min Value for DTD5019	N/mm² Tons per sq.in.	417 27.00
0.2% PROOF STRENGTH:	Mean Value	N/mm ² Tons per sq.in.	240 15.54
	Min Value for NES.749 PT.3	N/mm ² Tons per sq.in.	230 14.89
	Min Value for DTD5019	N/mm² Tons per sq. in .	216 14.00
ELONGATION:	Mean Value	% on 5.65A	45
	Min Value for NES.749 PT.3 and DTD5019	% on 5.65A	40
HARDNESS:	Range for TCL10 <mark>0 Range for NES.7<mark>49 PT.3</mark></mark>	HV5 HV5	120 - 140 125 - 140
MODULES OF ELASTICITY:	In Tension or	N/mm ²	116.5 X 10 ³
POISSON'S RATIO:			0.33
ULTIMATE SHEAR STRENGTH:		N/mm ² Tons per sq.in.	253 16.4
YIELD POINT IN SHEAR:		N/mm ² Tons per sq.in.	143 9.3
IZOD IMPACT VALUE:		J.	41.7
ELECTRICAL PROPERTIES			
ELECTRICAL CONDUCTIVITY AT 20°C:		Referred to copper	15% ± 5%
SPECIFIC RESISTANCE AT 20°C:		Microhms per mm	1.13
ELECTROCHEMICAL EQUIVALENT:		Kg per coulomb	32.4
SOLUTION POTENTIAL:		m V Calomel scale	230
MAGNETIC PERMEABILITY		μ	1.0015
THERMAL PROPERTIES			
MELTING TEMPERATURE:		°C	1008
STRESS RELIVING TEMPERATURE:		[°] C (for 15/20 mins)	300
SOLUTION TREATMENT TEMPERATURE:		°C (for 60 mins)	800
THERMAL CONDUCTIVITY:		W/m [•] C	77 at 100°C 103 at 300°C
COEFFICIENT OF THERMAL EXPANSION	N: per ℃	19 x 10⁻ ⁶	

P A G

Е

COMPARATIVE & ELEVATED TEMPERATURE PERFORMANCE

Ρ

Α

G

Ε

The strength to weight ratio of Tungum Alloy compares most favourably with other materials. In tubes, this often affords the opportunity to employ SMALL-ER, LIGHTER SECTIONS - easing handling during fabrication, reducing the size and cost of fittings and supports; **opening the way for more compact space saving systems.**

The graph shows the results of burst tests conducted on identical samples 1/2" O/D x 20 SWG tubing.

Room Temperature Design strengths taken from BS 1306 clearly confirm the outstanding performance of Tungum Alloy relative to other copper based materials.

41 N/mm ²
68 N/mm ²
82 N/mm ²
105 N/mm ²

SHORT-TIME ELEVATED TEMPERATURE PROPERTIES

The graphs apply to Tungum Alloy tubing in the annealed condition with the test pieces maintained at the temperature for a period of 60 minutes.

STRESS TONS PER SQ.

5

200

100

50

Yield Point Stress

100

DEGREES CENTIGRADE

150

NO P

B ONGATION %

10 d

200

30

FATIGUE & LOW TEMPERATURE CHARACTERISTICS

As would be expected of a material originally developed for use in the hydraulic control systems of aircraft, Tungum Alloy has excellent fatigue resisting properties.

Today, pulsing pressures and vibration are recognised as being a major factor influencing the integrity and performance of all hydraulic systems, irrespective of the application.

In practice, tubing is often used after bending. In this operation the outer wall of the tube becomes thinner and the inner wall thicker, and the severity of this effect depends on the radius of curvature, and the angle encompassed by the bend. The tube also assumes ovality due to the forming operation.

The radius of the bend, the angle of the bend, the ovality of the tube and the properties of the tubing material, all influence its fatigue life. The relationship between the maximum stress, calculated for straight and circular Tungum Alloy tubing, and the number of stress repetitions to cause failure, is shown below. The graphs are based on the results of tests carried out in controlled conditions and are reproduced for guidance purposes only.

Tungum Alloy satisfies many low temperature and cryogenic applications. The mechanical properties of the alloy all improve with reducing temperatures down to as low as -196°C. The impact resistance also remains substantially unchanged over the same temperature range.

The table opposite compares the properties of solid, hard as drawn Tungum Alloy at 15°C and -196°C.

Temperature	15°C	-196°C	
.2% Proof Stress (N/mm ²)	410	426	
Ultimate Tensile Stress (N/mm ²)	617	793	
Elongation % on 5.65 A	20	34	
Izod V-Notch value of energy absorbed in joules	41	43	

ВАСК ТО

T2000

Ρ

Α

G

Ε

GENERAL CORROSION RESIS-TANCE

The ratings below are the result of laboratory tests conducted under the controlled conditions noted. They are published for for guidance purposes only.

Where any doubt exists, samples of Tungum tubing are freely available for field trials in the precise conditions prevailing.

- E. Excellent resistance Rating: - minimal attack takes place.
 - G. Good resistance under the conditions of test.

SUBSTANCE	Max Concen- tration	Max Temp °C	Rating	SUBSTANCE	Max Concen- tration	Max Temp [°] C	Rating
Acetic Acid	All 0-30	20 20	E G	Oxalic Acid	25grms 100c.c.	20	E
Acetic Anhydride	0-100	20	E	Ph <mark>osp</mark> horic Acid	0-10	100	G
Alum	0-100	20	G	Pic <mark>ric</mark> Acid	All	20	G
Aluminium Sulphate	0-40	20	G	Pot <mark>ass</mark> ium Bromide	S.S	20	E
Borax	All	20	E	Pot <mark>assium Ni</mark> trate	All	20	E
Calcium Bi-Sulphate	All	70	G	Sali <mark>cylic Acid</mark>	S.S	20	G
Carbon Tetrachloride	-	Boiling	Е	So <mark>dium Bicarbo</mark> nate	-	-	G
Citric Acid	All	20	G	So <mark>dium</mark> Chloride	S.S	20	E
Cotton Seed Oil	All	20	E	So <mark>dium</mark> Hydroxide	S.S	20	E
Creostum	All	20	G	So <mark>diu</mark> m Hypochloride	S.S	70	G
Cresylic Acid	All	20	E	Sodium Hypochlorite	1% Av.Cl.	50	E
Formaldehyde	All	20	G	Sodium Metabisulphate	S.S	20	E
Formic Acid	0-50	20	E	Sodium Sulphate	S/S	20	E
Hydrochloric Acid	0-10	20	G	Sodium Sulphite	0-10	50	E
Hydrogen Sulphide	2500p.p.m.	-	G	Stearic Acid	All	20	E
Hydrokinone	0-100	20	E	Sulphur Dioxide	-	-	G
Lactic Acid	All	20	E	Tannic Acid	All	20	E
Halic Acid	30grms./100c.c	20	G	Tartaric Acid	All	20	E
Magnesium Chloride	0-10	50	E	Trichloroethylene	-	Boiling	E
Methylene Chloride	-	Boiling	E	Vinegar	All	20	G
Metol	S.S.	20	E	Zinc Chloride	-	20	E
Oleic Acid	All	20	Е	Zinc Sulphate	S.S	20	E

Ρ Α G

Ε

CERTIFIED THAT THE WHOLE OF THE MATERIALS AND/OR PARTS DETAILED HEREON HAVE BEEN MANUFACTURED, TESTED AND INSPECTED AND, UNLESS OTHERWISE STATED ABOVE, CONFORM TO THE THE REQUIREMENTS/OF THE APPROPRIATE DRAWINGS AND/OR SPECIFICATION RELATIVE THERETO.

ΒΑСΚ ΤΟ

For and on behalf of TUNGUM HYDRAULICS LTD.